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We consider the mixed (hyperbolic–elliptic) system of two conservation laws mod-
eling the dynamics of van der Waals fluids. Viscosity and capillarity effects are taken
into account. We introduce a new class of semidiscretehigh-order schemeswhich are
entropy conservative(in the sense of Tadmor) when the viscosity is neglected and,
otherwise, dissipate the associated mathematical entropy. Our numerical schemes
generalize the works by E. Tadmor (1987,Math. Comput.49, 91) and P. G. LeFloch
and C. Rohde (2000,SIAM J. Numer. Anal.37, 2023) who proposed second-order
and third-order entropy-conservative schemes, respectively.

Following B. T. Hayes and P. G. LeFloch (1998,SIAM J. Numer. Anal.35, 2169),
we demonstrate numerically that balanced viscosity and capillarity terms in van der
Waals fluids may generatenonclassical shock wavesor subsonic propagating phase
transitions. Such waves areundercompressiveand do not satisfy standard entropy
criteria. They must be characterized by akinetic function, which we determine nu-
merically in this paper from vanishing viscosity and capillarity. The kinetic relation
is an efficient tool to discuss the interplay among the viscosity, capillarity, and dis-
cretization parameters in van der Waals fluids.c© 2001 Academic Press

Key Words:hyperbolic; conservation law; entropy inequality; viscosity; capil-
larity; van der Waals; kinetic relation; difference scheme; high-order accurate; en-
tropy conservative.

1. INTRODUCTION

The dynamics of compressible fluids undergoing liquid–solid or vapor–liquid phase trans-
formations can be modeled by the standard balance laws (mass, momentum) supplemented
with a nonconvex equation of state, such as the one introduced by van der Waals. Restrict-
ing attention to a model of two conservation laws (the temperature being, formally, kept
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constant), one knows that, above some (critical) temperature this model is hyperbolic but
not globally genuinely nonlinear (the pressure is a decreasing but not a globally convex
function of the specific volume); however, below the critical temperature, the model is a
mixed (hyperbolic–elliptic) system of conservation laws (the pressure is decreasing except
on some bounded interval). Solutions of such systems of nonlinear PDEs are generally
discontinuous and exhibit several distinct types of propagating waves:

(1) compressive shock waves satisfying the standard Lax or Liu entropy criteria;
(2) rarefaction waves, which are smooth and self-similar solutions;
(3) supersonic phase boundaries, which propagate faster than the characteristic

speed; and
(4) In the mixed type case, stationary phase boundaries.

Until recently the Riemann problem—for which the initial datum is a single step
function—was solved allowing only stationary and supersonic phase boundaries plus stan-
dard classical waves [12, 23]. Recently, after the works by James [17], Truskinovsky [32,
33], Slemrod [26], Abeyaratne and Knowles [1, 2], LeFloch [19–21], Sheareret al.[16, 24],
and Hayes and LeFloch [13–15], it became clear that nonstationary, subsonic phase inter-
faces (in the hyperbolic–elliptic regime) and nonclassical shock waves (in the hyperbolic,
but not genuinely nonlinear regime) should be included when solving the Riemann problem.
Indeed, such waves are admissible in the sense that they do arise in viscosity–capillarity
limits of the system.

Subsonic phase boundaries and nonclassical shocks have a special flavor: they are not
uniquely characterized by the standard Rankine–Hugoniot relations and their unique se-
lection requires asadditional jump relationcalled akinetic relation. Recall that there is
indeed no universal selection criterion for propagating phase boundaries. The basic reason
is that such waves areundercompressive, in the sense that—compared with compressive
shocks—fewer characteristics are impinging on the discontinuity.

The numerical approximation of the model under consideration was initiated by Slemrod
and followers [3, 5, 18, 25, 29]. Computing kinetic relations to characterize undercompres-
sive waves such as nonclassical shocks and subsonic phase boundaries was first tackled by
Hayes and LeFloch [15], who identified the basic issues arising numerically. The present
paper is a natural extension of [15].

In Section 2 we discuss the mathematical properties of the system modeling the dynamics
of fluids with viscosity and capillarity effects included. Special emphasis is put on the
mathematical entropy inequality, here associated with the total energy.

In Section 3 we introduce a new class of semidiscrete,high-order schemeswhich are
entropy conservative(in the sense of Tadmor) if the viscosity term is neglected and, oth-
erwise, satisfy adiscrete entropy inequality.Our construction is inspired by Tadmor [30,
31] and LeFloch and Rohde [22] who derived earlier second-order and third-order entropy-
conservative schemes, respectively. The main new idea is to treat as an independent variable
the derivative of one of the conservative variables, herevy, wherev is the specific volume.
An evolution equation forvy is formulated and discretized in the scheme. An important
observation is that an entropy inequality can indeed be derived.

In Sections 4 and 5 we show that our numerical scheme allows us to compute subsonic
phase boundaries and nonclassical shock waves. We consider here the Riemann problem
investigated theoretically by Slemrod [28] and Fan [7–10]. Following Hayes and LeFloch
[14], who studied nonconvex scalar conservation laws and phase transition models from
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nonlinear elasticity theory, we determine numerically the kinetic function associated with
van der Waals fluids and we discuss the interplay among the viscosity, capillarity, and
discretization parameters. Concluding remarks are provided in Section 6.

2. VISCOSITY–CAPILLARITY MODEL OF COMPRESSIBLE FLUIDS

2.1. The Mathematical Formulation

The derivation of the equations is based on a variational formulation. See, for instance,
the presentation given in Gavrilyuk and Gouin [6]. Let(y, t) 7→ χ(y, t) be the Lagrangian
description of the fluid motion. That is, by definition, the particle which was initially at
the positiony is located at the pointχ(y, t) at the timet . The particle velocityu and the
specific volumev are defined fromχ by

u = χt , v = χy. (2.1)

Prescribing an internal energy function of the form

e= e(v, vy),

we postulate that the action

J(χ) =
∫ T

0

∫
Ä

(
e(v, vy)− u2

2

)
dy dt=

∫ T

0

∫
Ä

(
e(χy, χyy)− χ

2
t

2

)
dy dt (2.2)

is minimal among all “admissible”χ . Here,Ä ⊂ IR is the (bounded) interval initially
occupied by the fluid and [0, T ] is a given time interval.

Let g : Ä× [0, T ] → IR be a smooth function with compact support. Replacing in (2.2)
χ with χ + g and keeping the first-order terms ing only, we obtain

J(χ + g) =
∫ T

0

∫
Ä

(
e(χy + gy, χyy+ gyy)− 1

2
(χt + gt )

2

)
dy dt

= J(χ)+
∫ T

0

∫
Ä

(
∂e

∂χy
(χy, χyy)gy + ∂e

∂χyy
(χy, χyy)gyy− χt gt

)
dy dt

+O(|g|2)

and, after integration by parts,

J(χ + g) = J(χ)
∫ T

0

∫
Ä

((
− ∂e

∂χy
(χy, χyy)

)
y

+
(
∂e

∂χyy
(χy, χyy)

)
yy

+ χt t

)
g dy dt+ O(|g|2).

Since the solutionχ should minimize the actionJ andg is arbitrary, this formally yields

χt t +
(
− ∂e

∂χy
(χy, χyy)+

(
∂e

∂χyy
(χy, χyy)

)
y

)
y

= 0. (2.3)
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Returning to the functionsu andv, in view of (2.1) we also havevt = χyt = uy. Intro-
ducing the pressure term

P(v, vy, vyy) = − ∂e

∂v
(v, vy)+

(
∂e

∂vy
(v, vy)

)
y

, (2.4)

we deduce from (2.1) and (2.3) that

vt − uy = 0,
(2.5)

ut + P(v, vy, vyy)y = 0.

This completes the derivation of the fluid model for the unknownsv andu.
Next, we take into account the viscosity effects. Denoting byµ(v) the (volume-dependent)

viscosity coefficient of the fluid, we replace system (2.5) with

vt − uy = 0,
(2.6)

ut + P(v, vy, vyy)y = (µ(v)uy)y.

Finally, defining the total energy by

E(v, u, vy) = e(v, vy)+ u2

2
,

we find the additional conservation law

E(v, u, vy)t + (P(v, vy, vyy)u)y =
(

uy
∂e

∂vy
(v, vy)

)
y

+ (µ(v)uuy)y − µ(v)u2
y. (2.7)

Here the energy plays the role of a mathematical entropy.
It remains to discuss the properties of the internal energy functione. A standard choice

in the literature on phase transition dynamics in fluids is to takee to be a quadratic function
in vy. (A linear term should not appear because of the invariance of the energy via the
transformationy 7→ −y.) We may assume that, for some positive functionλ(v), called the
capillarity coefficient,

e(v, vy) = ε(v)+ λ(v)
v2

y

2
. (2.8)

Under this condition, the total pressureP can be decomposed into a pressure term depending
only onv and a capillarity term, as follows:

P(v, vy, vyy) = p(v)− λ′(v)v
2
y

2
+ (λ(v)vy)y, p(v) = −ε′(v). (2.9)

Based on (2.9), Eq. (2.6) take the more familiar form

vt − uy = 0,
(2.10)

ut + p(v)y =
(
λ′(v)

v2
y

2
− (λ(v)vy)y

)
y

+ (µ(v)uy)y.
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On the other hand, using (2.9), Eq. (2.7) becomes

(
ε(v)+ u2

2
+ λ(v)v

2
y

2

)
t

+ (p(v)u)y

=
(

u

(
λ′(v)

2
v2

y − (λ(v)vy)y

))
y

+ (µ(v)uuy)y + (uyλ(v)vy)y − µ(v)u2
y. (2.11)

We point out that this model has been often considered in the mathematical literature on
phase transition dynamics, under the simplifying assumption that the capillarityλ(v) = λ0

be a positive constant.

2.2. Hyperbolicity and Decrease of the Mathematical Entropy

It is immediate to check the following property. Consider the linearization of the model
(2.4), (2.5) near some constant valuev0 given by

vt − uy = 0,
(2.12)

ut − ∂
2e

∂2v
(v0, 0)vy = 0,

obtained by keeping first-order differential terms only. Then (2.12) is a strictly hyperbolic
system of PDEs if and only if the internal energy function satisfies

∂2e

∂2v
(v0, 0) > 0. (2.13)

Moreover, if (2.13) holds for allv0, then the total energyE(v, u, 0) = e(v, 0)+ u2/2 is a
strictly convex function of the conservative variables(v, u). For van der Waals fluids, the
hyperbolicity condition holds only in some regions. See Section 4.

Given some internal energy functione= e(v, vy) and some nonlinear viscosityµ =
µ(v) > 0, let us consider the corresponding viscosity–capillarity model (2.6), where the
pressureP(v, vy) is defined by (2.4). Consider any solution(y, t) 7→ (v, u)(y, t) decaying
to some constant solution(v∗, u∗)as|y| → ∞ (its first-order space derivative also vanishing
at infinity) Then we have

d

dt
ε(t) ≤ 0, (2.14)

where

ε(t) :=
∫

IR

(
e(v(y, t), vy(y, t))− e(v∗, 0)− ∂e

∂v
(v∗, 0)(v(y, t)− v∗)+ u(y, t)2

2

)
dy.

We conclude with some remarks concerning the hyperbolic regime.
For the example (2.8), the condition (2.13) readsε′′(v) > 0. Let us assume the uniform

bound

0< ε0 ≤ ε′′(v) ≤ ε1 for all v > 0.
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We have here

e(v, vy)− e(v∗, 0)− ∂e

∂v
(v∗, 0)(v − v∗) = ε(v)− ε(v∗)− ε′(v∗)(v − v∗)+ λ(v)v

2
y

2
.

Therefore, assuming also some bounds

λ0 ≤ λ(v) ≤ λ1 for all v > 0,

(2.14) yields the following a priori bound (for allt ≥ 0):∫
IR

(
ε0|v(y, t)− v∗|2+ |u(y, t)− u∗|2+ λ0v

2
y

)
dy

≤
∫

IR

(
ε1|v(y, 0)− v∗|2+ |u(y, 0)− u∗|2+ λ1v

2
y

)
dy.

More generaly, if the energy function satisfies inequalities of the form

ε0

2
|v − v∗|2+ β0

2
|vy|2 ≤ e(v, vy)− e(v∗, 0)− ∂e

∂v
(v∗, 0)(v − v∗)

≤ ε1

2
|v − v∗|2+ β1

2
|vy|2

for all v and vy under consideration, then the following a priori estimate holds for all
timest : ∫

IR

(
ε0|v(y, t)− v∗|2+ |u(y, t)− u∗|2+ β0|vy(y, t)|2

)
dy

≤
∫

IR

(
ε1|v(y, 0)− v∗|2+ |u(y, 0)− u∗|2+ β1|vy(y, 0)|2

)
dy.

3. A CLASS OF ENTROPY CONSISTENT SCHEMES

In this section, we focus on the numerical discretization of the model described in Sec-
tion 2. Our objective is to derive a class of high-order, conservative, finite-difference schemes
that, additionally, are conservative for the associated mathematical entropyE when the vis-
cosity effects are neglected and satisfy the discrete entropy inequality (2.14).

Our main concern is to design a scheme able to capture the zero viscosity–capillarity
limits. Therefore, following Hayes and LeFloch [13], we are going to scale out all of
the equation using the discretization parameter denoted byh; see Eqs. (3.1), (3.2), and
(3.4) below. Then the basic requirement is that the equivalent equation associated with the
scheme should coincide up to some high-order termO(h3), at least, with these reference
(continuous) equations.

Comparing rigorously the limiting solutions generated by the schemes and the limiting
solutions generated by the zero viscosity–capillarity limits is the main contribution in [13]
and this is the strategy pursued in the present work as well. We refer to the discussion in
the following sections.
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3.1. Discretization of the Flux and Capillarity Terms

Consider first the model (2.4), (2.5), neglecting the viscosity. Introducing the new vari-
ables

w = h vy, z= h uy,

we can considerw as an independent variable. We summarize the set of equations under
consideration as follows:

vt − uy = 0,

ut + Py = 0, (3.1)

wt − zy = 0.

Recall thatP is given by

P = − ∂e

∂v
(v,w)+ h

(
∂e

∂vy
(v,w)

)
y

. (3.2)

Denote byh > 0 the space step of the discretization and, for all integerj , define the
mesh point byxj = j h. We denote byv j = v j (t), u j = u j (t), andw j = w j (t) the discrete
approximations at the pointsxj (with prescribed initial conditions). Callingu j+1/2, Pj+1/2,
andzj+1/2 some numerical flux terms still to be defined, we are interested in difference
schemes in the following conservative form:

h
d

dt
v j −

(
u j+1/2− u j−1/2

) = 0,

h
d

dt
u j + Pj+1/2− Pj−1/2 = 0, (3.3)

h
d

dt
w j −

(
zj+1/2− zj−1/2

) = 0.

We aim at defining the discrete fluxesu j+1/2, Pj+1/2, andzj+1/2 in such a way that the
scheme (3.3) is also entropy conservative in the sense of [31]. That is, we seek for a discrete
version of the energy equation

∂t E + ∂yF = 0,
(3.4)

E = e(v,w)+ u2

2
, F = P(v,w, hwy)u− huy

∂e

∂vy
(v,w).

With this in mind, we choose

u j+1/2 =
K+1∑

k=−K

αku j+k,

(3.5)

zj+1/2 =
L∑

l=−L

βl (u j+1+l − u j+l ),
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in which the termsu j+k, for instance, are directly given by the second equation in (3.3). A
basic consistency argument forces us to impose

K+1∑
k=−K

αk =
L∑

l=−L

βl = 1. (3.6)

It remains to specify the expression for the pressurePj+1/2. This is done by requiring the
condition

d

dt

+∞∑
j=−∞

Ej = 0, Ej = e(v j , w j )+
u2

j

2
. (3.7)

Differentiating the above expression for the energyEj , we easily obtain

h
d

dt
Ej = h

∂e

∂v
(v j , w j )

d

dt
v j + h

∂e

∂vy
(v j , w j )

d

dt
w j + huj

d

dt
u j .

In view of (3.3) we have

h
d

dt
Ej = ∂e

∂v
(v j , w j )

(
u j+1/2− u j−1/2

)− u j
(
Pj+1/2− Pj−1/2

)
+ ∂e

∂vu
(v j , w j )

(
zj+1/2− zj−1/2

)
. (3.8)

Using (3.5) and after integration by parts, for instance writing

−
+∞∑

j=−∞
u j
(
Pj+1/2− Pj−1/2

) = +∞∑
j=−∞

Pj+1/2(u j+1− u j ),

we arrive at

h
d

dt

+∞∑
j=−∞

Ej =
+∞∑

j=−∞

(
Pj+1/2+ Qj+1/2+ Rj+1/2

)
(u j+1− u j )

with

Qj+1/2 =
K+1∑

k=−K

αk
∂e

∂v
(v j+1−k, w j+1−k),

Rj+1/2 =
L+1∑

l=−L

βl

(
− ∂e

∂vy
(v j+1−l , w j+1−l )+ ∂e

∂vy
(v j−l , w j−l )

)
.

One sufficient condition for (3.7) to hold is to choosePj+1/2 according to

Pj+1/2 = −Qj+1/2− Rj+1/2.
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Using the change of variablesk′ = 1− k andl ′ = −l , one checks easily that the above
definition is equivalent to setting

Pj+1/2 = −
K+1∑

k=−K

αk
∂e

∂v
(v j+k, w j+k)

+
L∑

l=−L

βl

(
∂e

∂vy
(v j+l+1, w j+l+1)− ∂e

∂vy
(v j+1, w j+l )

)
. (3.9)

This completes the derivation of the scheme for (2.4), (2.5).

3.2. Local Entropy Inequalities

Next we determine some mathematical entropy fluxes for each cell. Replacing
u j+1/2, Pj+1/2, andzj+1/2 in (3.10) by their definitions, we obtain

h
d

dt
Ej =

K+1∑
k=−K

αk
(

A(1)j,k − A(2)j,k

)+ L∑
l=−L

βl
(
B(1)j,l − 2B(2)j,l + B(3)j,l

)
(3.10)

with

A(1)j,k = u j+k
∂e

∂v
(v j , w j )− u j

∂e

∂v
(v j−k, w j−k),

A(2)j,k = u j+k−1
∂e

∂v
(v j , w j )− u j

∂e

∂v
(v j+1−k, w j+1−k),

B(1)j,l = u j+l−1
∂e

∂vy
(v j , w j )− u j

∂e

∂vy
(v j+1−l , w j+1−l ),

B(2)j,l = u j+l
∂e

∂vy
(v j , w j )− u j

∂e

∂vy
(v j−l , w j−l ),

B(3)j,l = u j+l+1
∂e

∂vy
(v j , w j )− u j

∂e

∂vy
(v j−1−l , w j−1−l ).

Finally, using decompositions of the type

aj+k − aj = (aj+k + aj+k−1+ · · · + aj+1)− (aj+k−1+ aj+k−2+ · · · + aj ),

we see that each of the terms above admits a conservative form. This allows us to deter-
mine easily a discrete entropy fluxFj+1/2. We conclude that there exist numerical fluxes
Fj+1/2 (formally consistent with the continuous fluxF) such that the following discrete
conservation law holds:

h
d

dt

(
e(v j , w j )+

u2
j

2

)
+ Fj+1/2− Fj−1/2 = 0. (3.11)

In conclusion, the formulas (3.3), (3.5), and (3.9) define a scheme for the unknownsv j

andu j , which is conservative for all of the equations in (3.3), including the discrete energy

Ej = e(v j , w j )+ u2
j

/
2. (3.12)
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In particular, we have the important stability property

d

dt

∞∑
j=−∞

(
e(v j , w j )+

u2
j

2

)
= 0. (3.13)

3.3. Discretization of the Viscosity Terms

To complete the description of the numerical scheme, we now take into account the
viscosity terms, covering the general case of a nonlinear viscosity coefficientµ(v). It is
sufficient to present the construction in the case of the system where the flux and capillarity
terms have been formally neglected, that is,

vt = 0,

ut = h(µ(v)uy)y, (3.14)

wt = 0.

Consider the numerical discretization schemes

h
d

dt
v j = 0,

h
d

dt
u j = µ j+1/2qj+1/2− µ j−1/2qj−1/2, (3.15)

h
d

dt
w j = 0,

with

qj+1/2 =
L∑

l=−L

βl (u j+l+1− u j+l ). (3.16)

Here the numerical valuesµ j+1/2 are approximations of sufficiently high order of the
nonlinear viscosityµ(v).

Differentiating the energyEj defined in (3.12) with respect tot and using (3.15), we
obtain

h
d

dt
Ej = u j (µ j+1/2qj+1/2− µ j−1/2qj−1/2).

Summing overj and integrating by parts, we obtain

+∞∑
j=−∞

d

dt
Ej = −

+∞∑
j=−∞

µ j+1/2qj+1/2(u j+1− u j )

= −
+∞∑

j=−∞

L∑
l=−L

µ j+1/2βl (u j+l+1− u j+l )(u j+1− u j ).

Setting

mj+l = u j+l+1− u j+l ,
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it follows that

+∞∑
j=−∞

d

dt
Ej = −

+∞∑
j=−∞

L∑
l=−L

µ j+1/2βl mj+l mj

= −
+∞∑

j=−∞

j+L∑
k= j−L

µ j+1/2βk− j mkmj . (3.17)

Assume from now on that the coefficientsβl (first introduced in (3.5) and then used again
in (3.16)) are chosen such that the (infinite) quadratic form

+∞∑
j=−∞

j+L∑
k= j−L

µ j+1/2βk− j mkmj ≥ 0 (3.18)

is nonnegative for allwk under consideration. Then from (3.17) we deduce that

+∞∑
j=−∞

d

dt
Ej ≤ 0, Ej = e(v j , w j )+

u2
j

2
. (3.19)

This property is to be compared with the equality found in (3.13) for the flux and capillarity
terms.

3.4. Order of Accuracy

The parametersαk andβl in (3.5) and (3.16) must be chosen so that (3.6) and (3.19) hold
true. We also require that the order of accuracy be sufficiently high so that the equivalent
equation associated with the scheme coincides with the original system except for terms of
O(h3).

For fixed valuesK andL in (3.5) and (3.16), it is always possible to find some coefficients
αk, k = −K , . . . , K + 1, andβl , l = −L , . . . , L, to guarantee:

u j+1/2− u j−1/2 =
K+1∑

k=−K

αk(u j+k − u j+k−1) = huy + O(h2K+3) (3.20)

and

zj+1/2− zj−1/2 =
L+1∑

l=−L

βl (u j+l+1− 2u j+1+ u j+l−1) = h2(u j )yy+ O(h2L+4)

qj+1/2− qj−1/2 =
L+1∑

l=−L

βl (u j+l+1− 2u j+1+ u j+l−1) = h2(u j )yy+ O(h2L+4)

(3.21)

Hence, from the definition (3.9) ofPj+1/2, it is clear that

Pj+1/2− Pj−1/2 = −h

(
∂e

∂v
(v j , w j )

)
y

+ O(h2K+3)+ h2

(
∂e

∂vy
(v j , w j )

)
yy

+ O(h2L+4),
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that is,

Pj+1/2− Pj−1/2 = h P(v j , w j )+ O(h2K+3)+ O(h2L+4) (3.22)

holds.
Based on (3.20)–(3.22) we then find the equivalent equations of the scheme:

vt − uy = O(h2K+2),

ut + Py = h(µ(v)uy)y + O(h2K+2)+ O(h2L+3),

wt − zy = O(h2L+3).

It follows that the optimal choice is obtained forK = L, so that we find

vt − uy = O(h2K+2),

ut + Py = h(µ(v)uy)y + O(h2K+2), (3.23)

wt − zy = O(h2K+3).

In Section 5 we will investigate several choice of parametersK = L = 1, 2, 3. For K =
L = 1, we find

(α−1, α0, α1, α2) =
(−1

12
,

7

12
,

7

12
,
−1

12

)
,

(β−1, β0, β1) =
(−1

12
,

7

6
,
−1

12

)
.

For K = L = 2, we find

(α−2, α−1, α0, α1, α2, α3) =
(

1

60
,
−2

15
,

37

60
,

37

60
,
−2

15
,

1

60

)
,

(β−2, β−1, β0, β1, β2) =
(

1

90
,
−23

180
,

37

30
,
−23

180
,

1

90

)
.

For K = L = 3, we find

(α−3, α−2, α−1, α0, α1, α2, α3, α4) =
(−1

280
,

29

840
,
−139

840
,

533

840
,

533

840
,
−139

840
,

29

840
,
−1

280

)
,

(β−3, β−2, β−1, β0, β1, β2, β3) =
(−1

560
,

11

504
,
−779

5040
,

533

420
,
−779

5040
,

11

504
,
−1

560

)
.

Let us finally check the sign property (3.18) when the viscosityµ is constant. Consider
the caseK = L = 1. We have

+∞∑
j=−∞

1∑
k=−1

µβkmj+kmj = −
+∞∑

j=−∞

µ

12

(−mj mj−1+ 14m2
j −mj mj+1

)
= µ

6

+∞∑
j=−∞

(
7m2

j −mj mj+1
)
.
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Since

(mj −mj+1)
2 = m2

j +m2
j+1− 2mj mj+1 ≥ 0,

we have

+∞∑
j=−∞

(
m2

j −mj mj+1
) ≥ 0,

and

µ

6

+∞∑
j=−∞

(
7m2

j −mj mj+1
) ≥ 0.

This indeed implies the desired decreasing property (3.19). By a tedious but rather straigh-
forward calculation, it can be checked that the same result holds in the other two cases
K = L = 2 andK = L = 3.

4. SUBSONIC PHASE BOUNDARIES AND NONCLASSICAL SHOCKS

In this section we show that the schemes proposed in Section 3 allow us to compute sub-
sonic (and supersonic) phase boundaries and nonclassical undercompressive shock waves.
We are primary interested in the van der Waals pressure law. However, it is convenient also to
compare it with a cubic pressure law described below. Throughout, the time-discretization
is based on a standard Runge–Kutta approach of sufficiently high order of accuracy. Except
when specified otherwise, all the tests are done with the scheme in Section 2 corresponding
to K = L = 2, so that the scheme is sixth order in space. All of the numerical solutions
will be generated from an initial datum of the form

(v(x, 0), u(x, 0)) =
{
(vl , ul ) for x < 0,

(vr , ur ) for x > 0,

for some constant Riemann data to be specified. The visocisty and capillarity coefficients
µ andλ will be taken to be constant.

4.1. Cubic Pressure Law

The van der Waals pressure can be well approximated by the cubic equation

p(v) = −(v − a)3+ v + b, v > 0, (4.1)

wherea > 0 andb > 0 are constants. In our experiments, for simplicity in the calculations,
we takea = 4 andb = 6. See Fig. 1a for a representation of the graph ofp. Setting

v− = 4−
√

3

3
, v+ = 4+

√
3

3
, (4.2)

three distinct regions can be distinguished:

(1) The intervalv ∈ [0, v−] corresponds to the liquid phase: the system (2.19) is strictly
hyperbolic and genuinely nonlinear.
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FIG. 1. (a) Cubic pressure law; (b) van der Waals pressure law.

(2) In the intervalv ∈ [v−, v+], the system is of elliptic type.
(3) The intervalv ∈ [v+,∞) corresponds to the vapor phase: the system (2.19) is strictly

hyperbolic and genuinely nonlinear.

The so-called Maxwell stationary phase boundary, by definition corresponds to zero
entropy dissipation. Here it connectsv = 3 tov = 5 or vice versa.

Test 1: Propagating phase boundary.Figure 2 (v andu components) displays a typical
subsonic phase boundaries, here propagating to the left, and preceeded with a rarefaction
wave. The dotted lines based on the critival valuesv− andv+ limit the hyperbolic and
elliptic regions. The data for this test are

(µ, λ) = (1, 0.2), (vl , ul ) = (3, 0), (vr , ur ) = (5, 2).

The mesh contains 600 points and the solution is represented at the timet = 0.25.

Test 2: Stationary phase boundary.Next, in Fig. 3 we used

(µ, λ) = (1, 1.5), (vl , ul ) = (2.8, 0), (vr , ur ) = (5.2, 0).

The mesh contains 500 points and the solution is displayed at the timet = 0.15. We start
here with a continuous velocity, which induces simply a stationary phase transition plus
two rarefaction waves in each of the characteristic families. Not surprisingly the stationary

FIG. 2. Propagating phase boundary. (a) Volume component; (b) velocity component.
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FIG. 3. Propagating phase boundary. (a) Volume component; (b) velocity component.

phase boundary satisfies the Maxwell condition; indeed it connects the valuesv = 3 to
v = 5.

Test 3: Effect of the viscosity and capillarity coefficients.The solution depends on the
relative values of the viscosity and capillarity coefficients. Indeed, in Fig. 4 using

µ = 1, (vl , ul ) = (2.8, 0), (vr , ur ) = (5, 2),

and successivelyλ = 0.1, 0.18, 0.25, we obtain propagating phase boundaries propagating
with various subsonic speeds. Here we used 800 mesh points and displayed the solution at
the timet = 0.22.

Figure 5 illustrates that the phase boundaries are truly subsonic: the straight line con-
necting the two states cut the graph of the pressure.

4.2. Van der Waals Pressure Law

In the rest of this section we deal with the well-known van der Waals equation of state,
given by

p(v, T) = RT

v − b
− a

v2
, (4.3)

wherea, b, R are numerical constants and where the temperatureT > 0 is fixed. We use

FIG. 4. Several values ofλ. (a) Volume component; (b) velocity component.
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FIG. 5. Subsonic phase boundaries.

here the standard constants

a = 3, b = 1

3
, R= 8

3
, (4.4)

and, for definiteness, the temperature is taken to beT = 0.95, just below the critical temp-
eratureT = 1. As in Section 4.1 on the cubic model, the system under consideration is
hyperbolic and genuinely nonlinear in each on the regionsv < v− and v > v+, where,
approximatively,

v− = 0.787, v+ = 1.330.

The Maxwell line corresponds to the phase boundary connectingv = 0.684 (liquid) and
v = 1.727 (vapor). Observe that the pressure is a convex function ofv sufficiently small
but a concave function forv sufficiently large.

Above the critical temperature, the model under consideration is always hyperbolic but
is not always genuinely nonlinear; see Section 4.3.

Test 4: Propagating phase boundary.Figure 6 displays a propagating phase transition
obtained from the following data:

(µ, λ) = (0.1, 1e− 5), (vl , ul ) = (0.6,−2), (vr , ur ) = (1.5, 0).

We used a mesh with 1000 points and we represent the solution at the timet = 0.15.

FIG. 6. Propagating phase boundary. (a) Volume component; (b) velocity component.
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FIG. 7. Stationary phase boundary. (a) Volume component; (b) velocity component.

Test 5: Stationary phase boundary.In Fig. 7, the test was performed with

(µ, λ) = (0.1, 1e− 3), (vl , ul ) = (0.684117091, 0), (vr , ur ) = (1.72700257, 0).

The initial jump is very close to the Mawell stationary phase boundary and, as expected,
the scheme keeps the Maxwell discontinuity stationary. The mesh contains 600 points and
the solution is displayed at the timet = 0.20.

Test 6: Effect of the viscosity and capillarity coefficients.Finally, as in Test 3, we
demonstrate that the solutions depend on the relative sizes of the viscosity and capillarity
parameters. Let us use

µ = 0.1, (vl , ul ) = (0.675,−1.45), (vr , ur ) = (0.75, 0),

together with several values of capillarityλ = 10−5, 0.1, 0.75. See Fig. 8. The solution
contains two (symmetric) propagating phase boundaries with opposite speeds. The mesh
contains 800 points and the solution is represented at the timet = 0.22.

Figure 9 illustrates that the phase boundaries are truly subsonic: the straight line con-
necting the two states cut the graph of the pressure.

4.3. Nonclassical Shock Waves in the Hyperbolic Regime

Above the critical temperature (that is,T > 1 in normalized units), the van der Waals
model is strictly hyperbolic, even though it is not always genuinely nonlinear. In this

FIG. 8. Several values ofλ. (a) Volume component; (b) velocity component.
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FIG. 9. Subsonic phase boundaries.

hyperbolic regime, instead of subsonic phase boundaries, the equations may exhibit non-
classical shock waves. This is illustrated below. Recall that the cubic equation of state in
the hyperbolic regime was dealt with by Hayes and LeFloch in [15].

We choose nowT = 1.005. Figure 10 represents the graph of the corresponding pressure
law.

The viscosity coefficient is fixed to be 0.1. The mesh size is 1000 points andK = L = 2
as before. Figure 11 shows a nonclassical shock obtained with the following values:

(vl , ul ) = (0.8, 0), (vr , ur ) = (1.5, 1), λ = 0.001.

Figure 12 shows the dependence of this solution with respect to the capillarity coefficient.
Figure 13 illustrates that shocks are truly nonclassical: the straight line connecting the

two states cuts the graph of the pressure.

5. KINETIC FUNCTIONS

To characterize the dynamics of subsonic phase boundaries and nonclassical shock waves,
we now determine numerically the kinetic functions associated with the schemes introduced
in Section 3. Precisely, we compute the right-hand value of the volume as a function of

FIG. 10. Van der Waals pressure law(T = 1.005).
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FIG. 11. Nonclassical shock wave (Van der Waals). (a) Volume; (b) speed.

FIG. 12. Several values ofλ. (van der Waals law). (a) Volume; (b) speed.

FIG. 13. Nonclassical shock on the pressure plot.
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FIG. 14. Several values ofλ (cubic law). (a) Volume; (b) speed.

the left-hand state. We also compute the propagation speed of the phase boundaries or the
nonclassical shocks. As will become clear from the plots below, the kinetic functions depend
on the viscosity/capillarity ratio (more precisely onµ2/λ) and on the specific scheme under
consideration as well.

Together with the kinetic functions, we plot also some extremal curves which are known
to limit the range of the kinetic functions, especially the curve along which the entropy
dissipation vanishes and the (Maxwell) curve along which the shock speed vanishes.

Kinetic functions for several capillarity coefficients.Figure 14 concerns the cubic pres-
sure law (4.1). In all of the runs we used the following initial data:

(vl , ul ) = (3, 0), vr = 5.

The viscosity is taken to beµ = 2 and the mesh contains 1200 points. We computed three
distinct kinetic curves associated with different values of the capillarity coefficient. A point
on the curve is associated with a propagating phase boundary found for some given initial
velocityur . Each curve is obtained by lettingur describe the interval [0.6, 5.].

Figure 15 concerns the van der Waals pressure law (4.3). We choose here the initial data

(vl , ul ) = (0.666,−1.8), vr = 0.75.

The viscosity isµ = 0.1 and the mesh contains 1200 points. Here each curve is obtained
for ur describing the interval [−1.8, 0.].

FIG. 15. Several values ofλ (van der Waals). (a) Volume; (b) speed.
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FIG. 16. Several values ofK andL (cubic law). (a) Volume; (b) speed.

Kinetic functions for several schemes.Next we study the effect of the order of accuracy
of the scheme on the kinetic curves (Cubic law). For definiteness we fix the following
constants:

(vl , ul ) = (3, 0), vr = 5, λ = 1.5, β = 1.

Similarly as above, we compute kinetic curves by lettingvl describe the interval [0.6, 10].
Figure 16 displays the results for several choices of the parametersK andL.

6. CONCLUSIONS

In this paper, we dealt with propagating phase boundaries modeled by the isothermal
model of compressible fluids governed by van der Waals-type equations of state.

Capillarity effects were taken into account by using the derivative of the specific volume,
vy, as an independant variable. We have introduced a new class of entropy conservative
numerical schemes in the sense of Tadmor. These schemes are endowed with nonlinear
stability properties: the total energy—which plays the role of a mathematical entropy in the
sense of Lax—is decreasing in time, the decay being due to the viscosity only. Hence, we
were able to reproduce at the discrete level an important property satisfied by the physical
model. We also established that the proposed schemes may have sufficiently high order of
accuracy, so that the corresponding equivalent equation coincide with the continuous model
up to O(h3) at least.

We demonstrated the existence of propagating subsonic phase boundaries and of nonclas-
sical undercompressive shock waves for the van der Waals model. The proposed schemes
successfully computed these undercompressive waves. Nonsteady subsonic boundaries (not
consistent with the standard Maxwell construction) are not found in thermodynamics text-
books nor in the Riemann solvers derived in [23] and [12]. Subsonic phase boundaries
are induced precisely by the capillarity effects, kept in balance with the viscosity effects.
The former create oscillations while the latter introduce dissipation in the equations. The
small-scale effects are dominant in determining the dynamics of undercompressive waves.
The observed oscillations are entirely expected and standard numerical methods such as the
TVD schemes are clearly not adapted.

Following [15], kinetic relations associated with the schemes were numerically deter-
mined. These curves depend on the order of the schemes and also on the relative strength
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of the viscosity and capillarity coefficients. The kinetic curves allow us to compare the
properties of the schemes.

The equivalent equation provides only some indication of the behavior of the schemes.
For sufficiently small propagation speed good agreement has been observed. But, for waves
with sufficiently large speed or large amplitude, some discrepancy does arise. This is a
central difficulty with dissipation-sensitive problems.

We have encountered some specific numerical difficulties with the van der Waals pressure
law, due to its shape. In normalized units at least and in the range of interest near the inflection
point, the subsonic phase boundaries connect states having very different characteristic
speeds. Indeed, the sound speed in the liquid tends to infinity as the volumev tends to zero,
while for largev in the vapor phase the sound speeds tends to zero. This appears clearly
in Fig. 1b. (This behavior is not found for the cubic law in Fig. 1a.) This has dramatic
consequences from the numerical standpoint. A small error in the liquid state corresponds
to a large error in the vapor one. As a consequence, finding numerically the range of
left-and right-hand states for which subsonic phase boundaries exist has been particularly
challenging. Then, nonclassical shock waves and subsonic phase boundaries may also be
particularly delicate to observe in practical situations.

Finally, we point out that extending the present approach to the viscosity–capillarity
model of van der Waals fluids based on three conservation laws (mass, momentum, and
energy) should be possible. Many of the properties derived here generalize immediately to
this model.
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